Advanced Nuclear Energy

Kansas Corporation Commission Work Study

October 22, 2024

Kati Austgen Senior PM, New Nuclear

Nuclear Power Contributions in the U.S.

476.5 million

Carbon emission reductions per year in metric tons

217,000 Short tons of NOx prevented

262,000 Short tons of SO₂ prevented

>90% The average capacity factor since 1999 \$10 billion

Contributions in federal taxes each year

\$2.2 billion

Contributions in state taxes each year

475,000 Jobs supported

6% Average electricity bill savings for consumers

\$60 billion

in contributions to the country's GDP

U.S. Clean Generation (2023)

47.8% NUCLEAR

26.2% WIND 14.8% HYDRO

10.2% SOLAR

1% GEOTHERMAL

94 reactors at 53 plant sites in the U.S.

3

Nuclear Energy in Kansas

Sources of electricity in Kansas

Source: https://www.nei.org/resources/fact-sheets/u-s-nuclear-plants

Recent Survey of NEI's U.S. Utilities

Nuclear power's potential role in meeting their company's decarbonization goals:

NEI utility member companies produce nearly half of all US electricity.

Types of Advanced Reactors

Range of sizes and features to meet diverse market needs

Advanced Nuclear Versatility

DOE Pathways to Commercial Liftoff

Nuclear offers a unique value proposition for a net zero grid

ŊÊI

Lowest System Cost Achieved by Enabling Large Scale New Nuclear Deployment

Lowest Cost System

Nuclear is 43% of generation (>300 GW of new nuclear)

Energy System with Nuclear Constrained

Wind and Solar are 77% of generation

Wind and solar are 50%

Nuclear is 13% (>60 GW of new nuclear)

Increased cost to customers of \$449 Billion

Both scenarios are successful in reducing electricity grid GHG emissions by over 95% by 2050 and reducing the economy-wide GHG emissions by over 60%

Nuclear Energy is Affordable

"Nuclear appears to be the cheapest scalable, clean energy source by far."

Exhibit 20: Nuclear is cost-effective... Cost of generation, different sources (\$/MWh)

Source: BofA Research Investment Committee, Lazard, Entler, et al. (2018). Note: nudear, coal, and natural gas price estimates from Entler, et al. Wind and solar cost estimates are from Lazard's 2023 Levelized Cost of Energy+ report. Wind + battery and solar + battery use estimates from California's Independent System Operator (CAISO) and assume a 4-hour lithium-ion battery storage system to account for firming costs. All cost estimates show unsubsidized costs. BofA GLOBAL RESEARCH **Exhibit 21: ...especially on an "all-in basis"...** LCOE & LFSCOE calculations by energy source

Exhibit 22: ...and has the highest energy ROI Energy returned on energy invested, by source

Source: BofA Research Investment Committee, D. Weißbach, G. Ruprecht, A. Huke, K. Czerski, S. Gottlie, A. Hussein; Red signals EROI below economically viable threshold BofA GLOBAL RESEARCH

Bank of America Analyst Report: https://advisoranalyst.com/wp-content/uploads/2023/05/bofa-the-ric-report-the-nuclear-necessity-20230509.pdf

System Benefits of Advanced Reactors

Long term price stability	Low fuel and operating costs	
Reliable dispatchable generation	 24/7, 365 days per year, years between refueling (Capacity factors >92%) 	
Efficient use of transmission	 Land utilization <0.1 acre/TWh (Wind =1,125 acre/TWh; Solar 144 acre/TWh) 	
Environmentally friendly	 Zero-carbon emissions, one of lowest total carbon footprints Many SMRs are being designed with ability for dry air cooling 	
Integration with renewables and storage	 Paired with heat storage and able to quickly change power 	
Black-start and operate independent from the grid	 Resilience for mission critical activities Protect against natural phenomena, cyber threats, and EMP 	

Source: SMR Start, <u>SMRs in Integrated</u> <u>Resource Planning</u>

Economic Benefits of SMRs

ŊÊI

- Employment
 - 900 manufacturing and construction jobs over 4 years (average)
 - 300 permanent positions during 60+ years of operation
 - Multiplier effect: additional 1.66 jobs in local economy, 2.36 rest of the state
 - Nuclear jobs pay 20% more, on average, than jobs at other energy sources
 - Nuclear jobs pay 36% more than average salaries in local area
- Economic Activity
 - \$500M+ in direct and indirect economic output annually
 - \$270 million in electricity sales
 - Spending at local (\$10M), State (\$48M) and national (\$236M) level
 - Taxes: \$10M in state and local, and \$40M in federal (annually)

Small Modular Reactors/Advanced Reactors Offer Significant Well-Paying, Long-Term Jobs

Generation Type	Permanent Jobs on Site	Industry Wage Median	Carbon-free Energy?	Grid-firm Energy?	Benefits Concentrated in Local Community?
Nuclear	237*	\$41.32	Yes	Yes	Yes
Coal	107	\$33.64	No	Yes	Yes
Natural Gas	30	\$34.02	No	Yes	Yes
Wind	80	\$25.95	Yes	No	No
Solar	36	\$24.48	Yes	No	No

* Based on NuScale VOYGR-12 design

Note: Comparison of alternatives producing annual electricity output equivalent to a typical 1,000 MWe coal plant

Source: ScottMadden, *Gone with the Steam*, October 2021 https://www.scottmadden.com/content/uploads/2021/10/ScottMadden_Gone_With_The_Steam_WhitePaper_final4.pdf

States Taking Action for Nuclear

1	Ex
-@-	Stı
-	Со

ploring Nuclear Technology with udies, Working Groups, mmissions and Task Forces

Connecticut, Florida, Indiana, Kentucky, Louisiana, Maryland, Michigan, Montana, Nebraska, New Hampshire, Ohio, Pennsylvania, Tennessee, and Texas

1	

Recognizing Nuclear as a Clean Energy Resource

Idaho, Michigan, Minnesota, North Carolina, Tennessee, Utah, and Virginia

Repealing Nuclear Moratoriums: Connecticut, Illinois, Removing Barriers and Signaling 16 Support

Kentucky, Montana, West Virginia, and Wisconsin Signaling Regulatory Support: Indiana, Mississippi, North Carolina, and South Dakota

Incentivizing Nuclear Technology and Supply Chain

Kentucky, Michigan, Tennessee, Virginia, Washington, and Wyoming

Current State Policies: https://www.nei.org/resources/reports-briefs/state-legislation-and-regulations State Policy Options: https://www.nei.org/resources/reports-briefs/policy-options-for-states-to-support-new-nuclear

Key Federal Policies

Bipartisan Infrastructure Law November 15, 2021

Advanced Reactor Demonstration Program (ARDP) Funding \$2.5B for two commercial demos

Nuclear Hydrogen Hub \$8B total

Civil Nuclear Credit Program \$6B to support financially challenged plants Inflation Reduction Act August 16, 2022

Production Tax Credit (PTC) for Operating Plants Up to \$15 per MWh

Technology-Inclusive PTC for Clean Electricity \$30 per MWh

Technology-Inclusive Investment Tax Credit (ITC) for Clean Electricity 30% + 10% in energy communities + 10% using U.S. components

Clean Hydrogen Credit \$3 per kilogram

118th Congress

Nuclear Fuel Security Act

LEU/HALEU domestic production authorizing legislation in FY 2024 NDAA (December 22, 2023)

FY 2024 Appropriations Legislation \$2.72 Billion for domestic fuel production (March 9, 2024)

Additional \$800 Million for Small Modular Reactors (March 9, 2024)

40 Year Reauthorization of the Price-Anderson Indemnification Act (March 23, 2024)

ADVANCE Act

Increase regulatory efficiency & reduce regulatory costs (July 9, 2024)

Strong Public Support for Nuclear Energy

Global averaae

80%

80%

61%

Non-Member

Support by...

n=4.250

100%

100%

Top 5 nuclear sentiments³

(% agree)

to keep growing	76 %
We need to be building capacity for more energy, not just trying to use less	63 %
We need nuclear energy in the mix, along with renewables, if we are to meet our climate goals	60 %
Leaving nuclear waste behind is just wrong, however safe it is	59 %
We should use advanced nuclear energy to reduce our dependence on other countries	58 %

Support Oppose 0% 20% 60% 40% Support Environmental 20% members/supporters² Oppose 0% 20% 40% 60%

Support vs. opposition¹

US

US

Overall

Source: Potential Energy, 2023, https://potentialenergycoalition.org/wp-content/uploads/NewNuclear Report May2023.pdf

Member

Advanced Nuclear Deployment Plans

State support and projects that may be in operation by early 2030s

©2024 Nuclear Energy Institute Updated 09/25/2024

QUESTIONS?

TTTT ITTT

tim

LITT

TITI

TIT

111 9

urd Way, GENSLER